Author: Arunangshu Das

Trust me, I'm a software developer—debugging by day, chilling by night.

In Natural Language Processing (NLP), where machines endeavor to understand and generate human language, text embeddings stand as the cornerstone of modern techniques. Text embeddings are numerical representations of text data that capture semantic and syntactic information, enabling machines to comprehend and process human language more effectively. Understanding Text Embeddings Text embeddings transform raw text into a numerical format that machines can work with. These numerical representations capture the contextual meaning of words, phrases, or entire documents. By encoding semantic relationships between words, text embeddings enable algorithms to grasp nuances such as similarity, context, and semantics. Popular Methods of Generating…

Read More

In Natural Language Processing (NLP), Named Entity Recognition (NER) stands as a fundamental technique with remarkable potential. It’s the key that unlocks the treasure trove of information concealed within textual data. From extracting entities like names of people, organizations, locations, dates, and more, NER revolutionizes how we comprehend, analyze, and interact with language. Understanding Named Entity Recognition Named Entity Recognition, in its essence, is the process of identifying and categorizing named entities within a body of text. These named entities could range from proper nouns like names of people, organizations, and locations to temporal expressions like dates and times. By…

Read More

In the world of computers and language, understanding human language has always been really hard. But now, things are changing thanks to a cool new technique called BERT. It’s like a super smart tool that helps computers understand language better. It’s making a big difference in how we use computers to understand what people are saying or writing. Understanding BERT: BERT, developed by researchers at Google in 2018, stands as a milestone in the evolution of NLP models. Unlike its predecessors, BERT employs a transformer architecture, which enables it to capture contextual information from both left and right contexts in…

Read More

In computer vision and object detection, algorithm that stands out for its efficiency and accuracy: YOLO, short for You Only Look Once. Developed by Joseph Redmon and Santosh Divvala, YOLO revolutionized object detection by introducing a single neural network architecture capable of detecting objects in real-time with impressive precision. What is YOLO? YOLO Algorithm is an acronym for “You Only Look Once,” which succinctly describes its fundamental principle: instead of traditional object detection methods that involve multiple passes through an image or frame, YOLO performs detection in a single forward pass of the network. This approach makes YOLO extremely fast,…

Read More

In computer vision, the ability of machines to understand and interpret visual data has made significant strides in recent years. One crucial task within this domain is object localization. Whether it’s autonomous vehicles identifying pedestrians on the road, surveillance systems detecting intruders, or medical imaging diagnosing diseases, object localization plays a pivotal role. Understanding Object Localization At its core, object localization involves identifying the location of objects within an image or a frame of a video. Unlike object detection, which merely recognizes the presence of objects, localization precisely pinpoints their positions with bounding boxes or pixel-wise segmentation. Techniques for Object…

Read More

In artificial intelligence, few fields have captured the imagination and accelerated innovation as rapidly as computer vision. From enabling autonomous vehicles to revolutionizing healthcare diagnostics, computer vision has transcended its roots as a niche research area to become a cornerstone of modern technological advancements. 1. Achievements: Deep Learning Dominance: In recent years, deep learning has emerged as the cornerstone of computer vision. Convolutional Neural Networks (CNNs), with their ability to automatically learn hierarchical features from raw pixel data, have achieved remarkable success in various tasks like image classification, object detection, and semantic segmentation. Diverse Applications: Computer vision applications span across…

Read More

In machine learning, the quality and quantity of data play pivotal roles in the performance of models. However, obtaining large, diverse, and labeled datasets can be a challenging task. This is where data augmentation comes into play, offering a powerful solution to enhance the training data by generating synthetic samples. Understanding Data Augmentation Data augmentation is a technique commonly used in computer vision and natural language processing tasks. It involves applying a variety of transformations to the existing data to create new instances that are similar but not identical to the original samples. These transformations maintain the inherent characteristics of…

Read More

Introduction: In machine learning, It’s the technique that allows models to leverage knowledge gained while solving one problem and apply it to a different, but related, task. This capability has revolutionized various fields, from computer vision to natural language processing. Understanding Transfer Learning: Transfer learning operates on the premise that knowledge acquired from solving one task can be transferred to another task, even if they are not directly related. Instead of training a model from scratch each time for a new task, transfer learning enables the reuse of pre-trained models or their learned features, thus significantly reducing the need for…

Read More

In the ever-evolving landscape of deep learning, researchers are continually pushing the boundaries of what neural networks can achieve. Among the myriad of architectures and techniques, one stands out for its efficiency and effectiveness in handling complex visual data: the Inception Module and its eponymous network. Developed by researchers at Google, the Inception Module and its subsequent iterations have played a pivotal role in advancing the field of computer vision. Understanding Inception Modules: At the heart of the Inception Network lies the Inception Module, a fundamental building block designed to capture features at multiple scales efficiently. Unlike traditional convolutional layers…

Read More

Convolutional Neural Networks (CNNs) have revolutionized various fields, particularly computer vision, with their ability to extract meaningful features from input data. Among the diverse array of convolutional layers, the seemingly modest 1×1 convolution has garnered significant attention for its remarkable versatility and impact on model performance. Diving Deeper into Convolution: Before delving into the intricacies of 1×1 convolutions, it’s crucial to solidify our understanding of convolutional operations within neural networks. Convolutional layers leverage learnable filters to perform localized operations on input data, enabling the network to extract hierarchical features and patterns. These layers form the backbone of CNNs, facilitating tasks…

Read More